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The response of a turbulent boundary layer to abrupt 
changes in surface conditions 

By A. A. TOWNSEND 
Emmmuel College, Cambridge 

(Received 4 November 1964) 

In  a previous paper, it  was shown that abrupt changes in the surface conditions 
under a very deep boundary layer cause changes of mean velocity and tempera- 
ture that satisfy the dynamical conditions for self-preserving development. 
Here the theory is extended to predict the development of the modified flow in 
the moderately deep layers that occur in nature and the laboratory. The problems 
considered are the changes in the velocity profile produced by an abrupt change 
of surface roughness and also by a line of concentrated roughness such as a fence, 
the changes in temperature produced by change of roughness combined with 
changes of heat flux at the surface, and diffusion of heat or a scalar pollutant 
from a line source at or near ground level. The predictions are compared with 
observations by Rider (1952) of the flow downwind of a hedge, by Rider, 
Philip & Bradley (1963) of temperature and humidity downwind of a change in 
surface, and of vertical diffusion from a line-source at ground level. 

~ ~~ ~~ 

1. Introduction 
Using results established in the laboratory for boundary layers to describe 

the properties of the earth’s boundary layer has been comparatively successful, 
but the usual and uncontrollable inhomogeneity of the earth’s surface presents 
a serious obstacle to the application of results and theories established for 
uniform surfaces. The question of whether a surface is sufficiently uniform can be 
answered only if the effects of non-uniformity can be calculated, and the simplest 
kind of non-uniformity is a sudden change of surface roughness along a boundary 
at right-angles to the wind. Elliott (1958), Taylor (1962) and Panofsky & Town- 
send (1964) have put forward semi-empirical theories to describe the effects on 
the wind profile of a change of roughness, all making assumptions about the 
nature of the flow and requiring overall conservation of momentum without 
enquiring into the dynamical possibility of the flow. Both Elliott and Panofsky 
& Townsend assume forms for the change of flow velocity from the upstream 
value a t  the same height that are self preserving in form, i.e. the dependence 
on distance from the change of surface is described completely by changes of the 
characteristic scales of velocity and length, and which allow a logarithmic dis- 
tribution of velocity very close to the surface. In a fist paper (Townsend 1965, 
referred to as I), it was shown that self-preserving development of this kind is 
dynamically possible if (1) the total depth of the boundary layer is much larger 
than I, ,  the depth of the modified layer, (ii) the ratio of the velocity change to the 
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local velocity is small, and (iii) log Zo/zo is large where zo is the roughness length. 
For self-preserving development, the dependence on distance of the two scales 
is found in terms of a non-dimensional distribution function whose form depends 
on the vertical transport of momentum, but any distribution which becomes 
logarithmic at small heights gives substantially the same results. The basic 
concepts are easily developed for other changes of roughness and to describe 
temperature fields caused by changes of roughness and changes of surface 
temperature. 

Even in the atmosphere, the requirement that log Zo/zo should be large is not 
satisfied strongly and practical use of the results needs a higher-order approxima- 
tion. In  this second paper, better approximations are found by assuming the 
distributions of velocity and temperature to have the forms appropriate for very 
large log Zo/zo and then using integral conditions-overall conservation of momen- 
tum and heat-to determine the magnitude of the scales. The procedure is similar 
to that used for predicting the development of turbulent boundary layers (Town- 
send 1961). The predictions are then compared with observations by Rider 
(1952) of the flow downstream of a hedge, by Rider et aZ. (1963) of temperature 
and humidity after flow from a tarmac surface to irrigated grass and of diffusion 
from line-sources near ground level. Effects of thermal instability are also 
discussed. 

Ox is in the wind direction, 
z1 is the roughness length for x < 0, 
zo is the roughness length at x > 0, 

U,(z) is the mean velocity at height z for x < 0, 
U(x, z )  is the mean velocity at (x, z ) ,  
6(x, z )  is the net displacement of the streamline through (x, z) ,  
u1 is the friction velocity for x < 0, 
T~ is the surface stress for x > 0, 
uo, vo are scales of velocity, 
I0 is a scale of length, 

T is the mean temperature relative to the surface temperature for x < 0, 

$ is the surface temperature for x > 0, 
Q is the local (thermometric) heat flux, 
Q0 is the surface flux for x > 0, 
Q1 is the surface flux for x < 0, 
k is the Karman constant, nearly 0.41. 

2. Change of surface roughness-velocity field 
As in paper I, the change of mean velocity a t  a particular height is expressed 

as the sum of a flow-acceleration term and a term representing the velocity change 
due to displacement of the streamlines, i.e. 

The notation and co-ordinates are those used in I, i.e. 

M = logz,/z,, 

7 = zP0, 
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From 4 3 of I, the velocity change due to streamline displacement is 

where 

When 7 is small, the velocity distribution is logarithmic in form, i.e. 

and 

For consistency with (2.1), it is necessary that 

that 

and that 

f (7) = log 7 + C for small 7, 

78 = u1 + uo{l + (log zO/(zl - c0)-l] 
Uo(l0g ZO/ZO - C + 1 + (log Z o / ~ l -  CJ-'} + ~1 M = 0. 

(2.3) 

(2-4) 

To obtain a second relation between the scales of velocity and length, we use the 
condition of overall conservation of momentum, 

where P, is the total change in momentum flux across the plane z = constant, 
and was shown in I to be 

Px = UlUO~O - ( ~ o g ~ o / z o - ~ o ) ~ m  f(T)dy+O (e u;lo or u -log-12). u z 1 (2.5) 
k2 0 ZO 

To the approximation of small log Zo/zo which is used throughout this paper, the 
condition is that 

where 

d 1% ZO/Zl - co ] = 2k2 log zo/zo - c + 2 - +M -[I I (log zo/zo - c+ 1)2  
' dz O O1OgzO/zO-c+ 1 

10 = -Job d7. 

To the approximation, the solution is 

Z0(log lo /xo  - 2 - *M - co + O(l0g-1 Zo/Zo)) = 2k24-12. (2.7) 

So far the distribution functionf(7) has not been specified nor has Zo been de- 
fined. The basic requirement is that the calculated flow should have the same 
behaviour as the asymptotic, self-preserving flow for very large log Zo/zo. Neces- 
sarily then, I. = 1 for equation (2.7) to approach the self-preserving form, and 
since f (7)  = log 7 + C for small 7, little variation in the form of the function is 
possible. Three possibilities were compared in figure 2 of I: 

(i) the mixing-length profile, 

51 Fluid Mech. 22 
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(ii) the 'Elliott ' profile, 
f(7) = log7 for 7 < 1, 

= 0 for 7 > 1, 

and (iii) the 'Panofsky & Townsend' profile, 

f(7) = 1% *7 + (1 - 47) for 7 < 2, 

= o  for 7 > 2. 

The constants C and C, are listed in table 1. For a moderately small value of 
log Zo/zo of six and small M ,  the greatest difference between the predicted values 
of I ,  is about 20 %, but the difference in predicted change of friction velocity is 

~ ~~ ~~ ~ ~ ~~ ~ ~~ ~~~ 

Profile C 0 0  2+c, 
Mixing length = 0.577 l + y  = 1.577 3.577 
Elliott 0 2 4 
Panofsky & 1 -log 2 = 0.307 #-log 2 = 1.807 3.807 
Townsend 

TABLE 1 

only 3 %  and the differences between the predicted velocity profiles are also 
about 3 %  expressed as fractions of the local velocity. The constants in the 
development equation are not those given by Panofsky & Townsend (1964) for 
the same shape of profile. The difference arises from the inclusion of the effects of 
streamline displacement and avoidance of the difficulty in the original method 
of reconciling velocity continuity and conservation of mass. The profiles for the 
three choices of f(7) are: 

(i) mixing length, 

(ii) Elliott, 

U - U, = u,/k [{ 1 + (log Zo/zl - C,)-'} log 7 - (log E,/z, - C,,)-1] for 7 < 
for 7 > = - U o / k  (log Zo/z1 - C0)-1 7-1 

(iii) Panofsky & Townsend, 

U - Ul = u o / w  + (1% ZolZ1- Qo)-'} (log 37 f 1 - 87) - (1 - *vr)/(log &1- C,)l 
for 7 < 2, 

for 7 > 2. = - uo/k (log Z0/Xl - C0)-1 7-1 
The streamline displacements are very nearly the same for any choice of f(7). 
In  particular, the displacement in the unmodified flow is S,, given by 

- M  
811 - 

O - (log zo/zo - c+ 1) (log z,/z, - M - C,) * 

For log Zo/zo = 6 and M not too large, SJE, w - 0.04 M and the net streamline 
displacement is fairly small compared with the thickness of the modified region. 
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3. Line roughness-flow downwind of a fence 
Following $ 5  of I, the velocity change is put as 

(3.1) 

with an acceleration term composed of a 'wall' component (u0/k) f (7) ,  and a 
'wake' component ( v , / k )g (y ) .  For small values of 7, f(7) = logq+C while 
g(7) approaches one. Both are small for large values of 7. For consistency of the 
form (2.1) with the logarithmic variation of velocity, it  is necessary that 

or, to the usual approximation, that 

uo(log zo/zo - C )  = v,. 

The additional flux of momentum is 

(3.3) 

and overall conservation of momentum requires that 

dPz/dx = u': - To = - 2u1 uo(l + (log z0/zo - C0)-1) - u& (3.5) 

To obtain definite results, substitute the special forms of the distribution 

functions co e-x 
f ( r )  = -1 p, s(7) = e-3 

7 

the last being the asymptotic form for mixing-length transfer. Then C = y 
and Co = y nearly, and 

P, = u,v,l,/k2 (log zo/zo - y - 1 + $vo/uJ. (3.6) 

(3.7) 

(3.8) 

the constant of proportionality depending on the characteristics of the line 
roughness. To find the constant A ,  a second condition must be found and the 
choice is not unique. We choose to require that the first moment of the fluid 
acceleration should equal the first moment of the stress gradient, i.e. 

To solve the momentum equation, we assume that the development equation 
has the form 

where A is a constant. The solution is then 

dZo/dx (log ZO/ZO - A )  = 2k2, 

woZ0(log zo/zo - y - 1 + *v0/u1) OC (log l o / Z o  - y - z +A)-l, 

51-2 
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By definition of the streamline displacement, 

where 

From equation (3-8), vol, varies as (log Z,/Z,)-~ for not too large vo/ul, and the term 
involving streamline inclination is negligible. From equations (3.3) and (3.8)' 

and 

and (3.10) 

Using the mixing-length variations of stress, 

7 = 2u,u,F(q) + 2%V,G(T), 
= 2ul (u ,e -~ -vo~e-~ ) ,  

we find that (3.11) 

and so A = y -  + = 0.077. 
These results do not involve an assumption of small disturbance and should 

give a good account of a real flow. For a solid obstacle such as a fence or hedge, 
the effective height, i.e. the value of I ,  extrapolated back to the position of the 
obstacle, should be near ho defined by 

F, = c, U$(h,) h, = c, U?hO k2 log2ho/z,, (3.12) 

where Po is the force per unit length exerted by the obstacle. The constant of 
proportionality in (3.8) should then be chosen so that -P, = Po when I ,  = h,. 
A convenient form of the final result is 

dl,/dx (log zo/zo + & - y )  = 2k2, 

(3.13) 

for an obstacle of effective height h,. If the line roughness adds momentum to 
the flow, the sign before the quotient is positive. 

Rider (1952) has published measurements of wind velocities downwind of a 
hedge of height 1.6 m, and his observations at heights of 0.5 and 1 m can be 
compared with the predictions of the theory. The full profile for our choice of 
distribution function is 

(3.14) 
and, for small T ,  

log zo/zo - y - 1 
(3.15) 
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6 

Then, 

X 

- 
X 

u-u. 7i-u. l+loglo/zo-y-2 -- (e-7 - 1)) 
73, - ___ u1 1 logz/zo 

", r n d  
h" 

(3.16) 

X 

- \* X 

- 

- x \: 
I I 1 1 ;, X I  

hedge. The results of comparing the observations with the theory are shown 
in figure 1, first omitting and then including the variation of U/Ul with height 
as given by (3.16). The roughness length zo was calculated from the observed 
profiles, and the fit depends on the choice of three parameters. The first is ul, 
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the value of the friction velocity far downstream of the hedge. Using friction 
velocities computed from the winds at the lowest height of observation, equation 
(3.13) indicates a value of ul of 1.06 times the value at 107m from the hedge, 
for any reasonable choice of the other two parameters. The second is really the 
constant of integration for equation (3.11), fixing the effective zero of horizontal 
distance, but it is convenient to use the effective value of I ,  at the hedge position. 
The third, h,, the value of I ,  for which the surface stress extrapolated by equation 
(3.13) is zero, is determined by the slope of the line drawn in figure 1 (a). The 
selected value for I ,  at the hedge is 60 ern and then the observations are consistent 
with h, = 1-23 m. The last two parameters are not entirely independent for they 
should both be of the same order of magnitude as the height of the hedge, and the 
drag coefficient C, should be of order one. In  fact, the calculated value of C, 
is 0.9. Agreement with the theory is good for measurements taken more than 
15m from the hedge. 

4. Temperature variations caused by change of surface 
If the density changes are too small to affect the motion, the temperature field 

in a flow is linearly dependent on the thermal boundary conditions. The solution 
of the change-of-roughness flow with constant but different heat flux from the 
surface on the two sides of the function can be obtained by Eiuperposition of the 
solutions for two special cases, (i) zero flux upstream, Q1 = 0, and (ii) Q1 = Qo, 
constant flux on both sides. 

With zero flux upwind of the change of surface, the temperature for negative 
x is independent of position and is taken as the zero level of temperature. The 
self-preserving distribution of temperature for positive 2 is 

and must coincide with the logarithmic distribution 

when 7 is small. Tg is the surface temperature and it has been assumed that the 
diffusivities for heat and momentum are equal in an equilibrium layer. For 
consistency, q51(7) = log7 +Cl for small 7, 

T = -  Polk) 4 1 W O )  (4.1) 

(4.2) T = TD - (Q&& log z/zo 

4 = & o l d ,  (4.3) 
To = Oo/k(lOg Zo/z0- CJ. (4.4) 

Overall conservation of heat requires that the additional heat flux in the layer 
Q, should be equal to Qox. In  I, i t  was shown that 

and, if an asymptotic form for the function g l ( ~ )  is used, q5,(q)d~ = - 8 by 
equation (7.11) of I and so 

Prom equations (2.3) and (2.4), 

&u1 = 1 - M(l0g Zo/z0 - C+ + O(1og Z,,/z,)+, 
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and to the approximation in use, 

I ,  log zo/zo - 2 q51(T#?) log 7 a7 = 2k2x. ( so- 1 (4.7) 

Corresponding to the three distribution functions for the change-of-roughness 

(i) Mixing-length profile: 
flow are three forms of q51(7) which lead to the following results: 

8 - -  - :: ( 1 -  loglo/zo+ 1 )-ly 

lo(log lo/zo - 2 -log 2 )  = 2 P X Y  

T, = Qo/ku, (log ZO/ZO - log 2 + M ) ,  

(iii) Panofsky & Townsend profile: 

q5lb) = log7+(1-7) for 7 < 2 ,  

= o  for 7 > 2 ,  

O o = % ( l -  u1 log zo/zo - log 2 )-l, 1 
Z0(log zo/zo - i) = 2PX,  

Tg = &o/ku1 (log &/zO - 1 + M ) .  

The greatest divergence of predicted temperature is a t  the surface, with a 
difference of yQo/(kul) between the first two. 

The self-preserving distribution for the constant flux situation Q1 = Qo is 

(4.11) 

which includes a term representing the change due to streamline displacement. 
Consistency with the logarithmic distribution requires that 

q52(7) = logy+C2 for small 7, 

that 

(4.9) 

(4.10) 

(4.12) 
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Overall conservation of heat requires that the additional heat flux should be zero, 
i.e. 

If a form for q52(7) valid for large values of log Zo/zo is used, sow g5z(r) d r  = 0, and 

the condition cannot be satisfied with areasonable choice of q52(r). In  I ,  the asym- 
ptotic profile obtained by assuming two components of mixing-length transfer 
one connected with the changes in eddy diffusivity due to the changes in Rey- 
nolds stress and the other connected with variations of heat flux in the modified 
region. The origin of the two components suggests that the length scale of the 
first component should be the same as the length scale of the velocity changes 
and given by the theory of 5 2, while the scale of the other component varies so as 
to allow overall conservation of heat. The mixing-length profile of I (equation 
(7.22)) can be changed in this way to 

(4.15) 

the first term being connected with change of eddy diffusivity and expected to  
behave in the same way as the velocity-distribution function. The second term 
has a scale whose ratio to that of the first varies slowly, i.e. a is a function of 
log Zo/xo. Substituting in the equation for heat conservation, we find that 

(1 - l/a) (logI,/xo-M- 1 -?-log 2) +log 2a = 0. (4.16) 

To our approximation, C, = log 2 + y, and 

M-10g2 1 MQo ,741 1 log zo/zo - y + 1 (log zo/zo - y + 
1 + eo = -- ’ 

log M-10g2 zo/zo - y + 1 1 ’ ku, TQ = MQo( 2 + 

(4.17) 

(4.18) 

with Zo given by &(log ZO/ZO - 4lP.f- 3 - y )  = 2k’~ .  (4.19) 

No equivalent of the Elliott profile exists with the necessary properties, but the 
Panofsky & Townsend profile can be modified in an analogous way to 

(4.20) } 
g52(7) = log 47 + 4 1  - 87) for 7 .c 2, 

= o  for r > 2. 

The condition (4.14) leads to 

(a- 2) (log zo/zo- $+log 2 - M )  + 1 = 0,  (4.21) 

and C2 = 2 - log 2 very nearly. Then 

I 8 0 -  --!!!&o( u1 log zo/zo + log 2 + (log zo/zo + log 2)2 ’ 1 N -  1 

ku, T, = MQ, (2 + 

(4.22) 

(4.23) 
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with Z, given by 
ZO(l0g Z o / ~ o  - &M - t + log 2) = 2kzx. (4.24) 

Although the Elliott kind of profile does not satisfy the basic condition (4.14), 
it  is still a fair approximation to the distributions which do when used with the 
form (4.9) and length scales given by either of the more self-consistent profiles. 
The temperature scale and surface temperature are 

and 
kulTQ = MQo (z + log M-10g21 zo/xo + 1 

(4.25) 

(4.26) 

5. Effects of thermal instability 
So far the buoyancy forces have been assumed to be too small to affect the 

turbulent motion in the region of modified flow, and the condition for this to be 
true is that the depth of the region should be small compared with the Monin- 
Obukhov length (Priestley 1959) L = r%T,/(lcgQ) (T, is the absolute temperature 
of the flow). If the ratio is not small, the existence of two distinct scales of length 
means that self-preserving development cannot occur except in very special 
circumstances, e.g. with characteristic L proportional to I,. Even though self- 
preserving flow is no longer a possibility, it  remains true that most of the varia- 
tion of velocity and temperature takes place in the new equilibrium layer which 
has about one fifth the thickness of the whole modified layer, and a fair approxi- 
mation to the distributions can be obtained by assuming the equilibrium profiles 
to extend to the extreme edge of the modified region. In  a diabatic, constant- 
stress, equilibrium layer, dimensional reasoning leads to the relation, 

in which the function approaches one for small values of z/L, and approaches zero 
for large z / L ,  probably as (z/L)-" where n may be about 4/3. For fairly small 

where cc M 0.6 (Priestley 1959), and 

78 x u = -  log--a- . 
k 20 3 

For very large z/L, since velocity gradients become very small, 

u = rt/k(logL/zo+A'), (5.3) 

where A' is possibly about 0.4. To apply these results to the modified layer, a 
representative value of the length L must be chosen and, if stress and heat flux 
are functions of height, it should be based on the stress and flux near the middle 
of the modified region. Two special cases will be considered, (a)  unchanged 
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ground flux of sensible heat, and ( b )  zero flux downwind of the change of 
roughness. 

For unchanged flux and small departures from neutral conditions, the results 
for self-preserving development lead to 

where P(7) and dz(7) are distribution functions defined in I, 444 and 7. From the 
forms of F and & it  appears likely that typical values of 3P + $ z  will not be far 
from + 1,  and so we assume an effective value of the Monin-Obukhov length 

L = L,( 1 + Bu,/u,), (5.5) 

where L, is the upwind value, and B x 1. Then the velocity distribution a t  the 
point considered is 

compared with 7 l-;( 2, L, 
u -2 log--a- Z 

upwind. A condition of no flow acceleration beyond z = I ,  would require that 

UlVO) = UP,) + U I ~ l / k ~ ,  ( 1  - aJo/LJ, 

but the displacement term is small and can be neglected if the main purpose is 
to estimate the influence of static instability. Then, for small Zo/Ll, 

For large Zo/Ll, 

and 

M _ -  _ -  UO 

u1 log zo/zo - a( 1 - B )  ZO/L1 - 

u, = (log Ll/*, + A'), 

'U = zl,+zc, (log L/z,+ A'), 
k 

210=-  M 
u1 log Ll/z,  + A' ' (5.7) 

With zero ground flux downstream of the change of surface, the effective 
value of L is a nearly constant multiple of L,, since dT,/(kg&) decreases from an 
infhite value at the surface to L, in the unmodified flow. For small Zo/Zl, the 
condition Ul(Zo) = U(Z,) leads to 

For large Zo/L,, 

u o = -  M + az, (L,1- L-1) 

u1 log zo/zo - aZ,/L * 

uo = - M +log L/L, 
u1 log L/z, +A' . 
- (5.9) 

The variation of u,/ul with Zo/Ll is indicated in figure 2 for several values of M .  
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The results obtained by matching an equilibrium distribution to the undis- 
turbed flow are not complete without a knowledge of the dependence of I, on 
fetch. In  the earlier sections, the problem was approached by using the condition 
of overall conservation of momentum to derive an equation for the length scale, 
but there is now no reason to suppose that the excess momentum flux caIculated 

- 0.1 

- 0.2 

. __+--  I 

1% lolzo 

FIGURE 2. Dependence of change of surface friction on log &/z0 for unstable conditiom of 
kind (b)  from equations (5.8) and (5.9). It is assumed that L = 2L, = 108zo, u = 0.6 
and A' = 0. The broken lines show the behaviour for neutral stability. 

from the equilibrium profile behaves in a similar way to the excess flux in the 
real flow. In  fact, assumption that i t  does leads to most implausible results for 
moderate values of Zo/Ll. A similar situation occurs in the theory of temperature 
changes after a change of roughness with constant surface-heat-flux (3  4). There an 
equilibrium temperature distribution is quite incapable of satisfying conservation 
of heat, and appeal was made to the physical causes of the temperature changes 
for a guide to the magnitude of the lengthscale. Here the extension of the modified 
region into the undisturbed flow may be regarded as a diffusion of momentum 
from the ground with an effective diffusivity determined by the turbulent 
motion a t  heights of order I,. This model, which is related to ones used by 
Cermak (1963) and by Miyake (see Panofsky & Townsend 1964), leads to 

U(Z,) d g p x  = 4v&)), (5.10) 

where the factor 4 permits the equation t o  represent the behaviour of 1, for adia- 
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batic conditions, and vT(Zo) is the eddy diffusivity for momentum at height I,. 
For the upwind profile and small Zo/Ll, 

VT = kulz( 1 - az/L,)-l, 

and so 5) (log Z0/Zl - aZ0/L1) (1 - aZ,/L) = 2k2 u L, +u, 

ax U1 
(5.11) 

reducing to the asymptotic form for small lo/Ll and large log Zo/zo. For either case 
considered, the equation integrates to 

I,( 1 - &al,/L) (log zo/zo - 1) = 2k22, (5.12) 

showing that I, is increased by instability in the ratio (1 - &d,/L)-l. Substituting 
the changed value of I,, the following results for change in surface friction are 
found ; 

(a )  unchanged flux (Q1 = Q,), 

( b )  zero flux downwind (Q, = 0) ,  

(5.13) 

(5.14) 

both for small values of Zo/Ll. 

6. Change of surface-comparison with observations 
Panofsky & Townsend (1964) have analysed observations of wind profiles 

downstream of a change of roughness and find them to be in fair agreement both 
with Elliott's (1958) and their theory of the effect. The same observations are 
also in agreement with the mixing-length profile or indeed any plausible profile 
which becomes logarithmic near the surface. Use of the concept of self-preserving 
development of changes in flow parameters leads to predictions of temperature 
changes caused by a sudden change in surface roughness and surface temperature. 
Rider et al. (1963) have made careful and comprehensive observations of tempera- 
ture and humidity in a boundary layer passing from a tarmac surface to well- 
irrigated mown grass. Over the impermeable tarmac, the upwards flux of total 
heat was almost entirely a flux of sensible heat, but evaporation from the grass 
was more than sufficient to carry the net flux of total heat and the flux of sensible 
heat changed sign near the ground. They compared their results with a solution 
by Philip (1959) of the corresponding diffusion problem which assumes no change 
in velocity profile, but the change of roughness was large, from z1 = 2 x cm 
to zo = 0-14cm7 and produced a considerable change of the velocity profile. 
The observations will be compared with a particular form of the theory, chosen as 
the simplest form that conforms to the basic requirements, and that can make 
allowance for the strong instability of the flow over the tarmac. 

Instability of the flow affects both the velocity profiles and the temperature 
profiles, but the effect on the distribution of surface stress is small if the considera- 
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tions of $5 are any guide. There it was estimated that, for zero heat flux down- 
wind of the change of surface, the change in surface stress is increased by a factor 
of 

compared with conditions of neutral stability. Typical values of L, are between 
1.5 and 5 m, and M = - 4.2 with 1, 1 m or less. The probable value of the factor 
is near 0.93 and the uncertainty in local friction velocity from this cause is no more 
than 4 yo. On the other hand, the static instability over the tarmac causes the 
temperature profiles to depart from the neutral logarithmic form, and measured 
values must be used. 

First, consider the flux and distribution of total heat, conveniently in the form 
of equivalent temperature and the corresponding thermometric flux. For these 
purposes, the equivalent temperature is 

(6.1) 
T,= Ti----, PWLW 

Pacp 

where Lw is the latent heat of water vapour, and p,/p, is the mass fraction of 
water vapour in the air. It is nearly the temperature that the air would attain 
if the latent heat of the contained water vapour were released by condensation. 
Downstream of the change of surface where the sensible heat flux is mostly 
small, we assume a logarithmic distribution of equivalent temperature, 

where Q, is the ground flux of total heat and T,(O) is the equivalent temperature 
at  the surface. The height 1, is calculated from 

l,(log lo/zo - 3 - log 2) = 2PX, (6-3) 

an expression which may be regarded as an average of the separate but similar 
expressions for constant-flux and step-flux conditions. Continuity of tempera- 
ture at height @, (neglecting the effects of streamline displacement) requires 
that 

and 

where T;(z) is the equivalent temperature over the tarmac at height z. The scale 
temperature &,/{k(ul + u,)) is calculated by equating Q,, the convective flux 
of total heat, to the observed net radiation, i.e. neglecting the heat flux in the 
ground, and finding the friction velocity u1 -t u, from the measured velocity pro- 
files and the value of uo/ul calculated from the measured roughnesses. The tabu- 
lated values are means of measurements a t  the edge of the tarmac and at 16 m, 
and so u1 was calculated from 
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with the calculated value of uo/ul. (Subscripts refer to height in om.) TL(&,) was 
found by interpolation of the tarmac profle. To reduce numerical work and 
possible scatter from finite times of averaging, the observations were grouped into 
sets of five consecutive runs with roughly similar values of net radiation. A com- 

m =  I m  

z =  5cm 

Mean error - 0.36 
(Variance)4 0-32 
Mean change 1.6 
Predicted change 
Observed change 

0.78 

2 = 4 m  m =  16m 
b r  A . 

z = Scm z = 11.5 z = 5 z = 11-5 z = 27.5 

0-41 0.20 0.58 0.41 0.40 
2.4 1.4 4.7 2-6 1.5 

1.01 0.91 0.97 1.15 1.24 

+0.02 -0.12 -0.14 +0*40 +Om36 

TABLE 2. Analysis of prediction errom for equivalent temperature 

150 

64 

27.5 

N 

1 1 5  

5 

Equivalent temperature (degC) 

FIGURE 3. Comparison of predicted and observed values of equivalent temperature, 
using runs 34-38 of Rider et al. (1963). Numbers on the curves refer to distances in 
metres from the change of surface. 

parison of the predicted and observed values of equivalent temperature is shown 
graphically in figure 3 for a set selected at random, and table 2 analyses the 
differences at positions within the region of appreciable change. The systematic 
deviations near the interface are expected from the crude angularity of the 
assumed profile, but predictions at lower levels are very satisfactory. 

The partition of the total heat flux between sensible and latent heat depends 
on conditions at the ground. With continued irrigation, the likely condition is 
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saturation at ‘ground level’, assumed to be the level with extrapolated zero 
velocity, i.e. a t  z = zo. Extrapolating the equivalent temperature to z = zo 
gives Ta(0) defined by (6.5), and the temperature and humidity at ground level 
can be found from a table of equivalent temperature of saturated air as a function 
of sensible temperature. It only remains to make plausible and consistent 
assumptions about the profiles of humidity and sensible temperature analogous 
with (6.2). The thermometric flux of humidity changes within the modified layer 
from its ground value Qw(0) to zero at height +lo, and the analogous profile is 

chosen so that the humidity gradient becomes zero at x = &. Humidity is 

(6.7) 

(6.8) 

Continuity of T, at height iZ0 requires that 

and the ground fluxes and distributions are now determined. 
The agreement between these predictions and the observations is analysed in 

tables 3 and 4, and figures 4 and 5 compare prediction and observation for the 
set of observations of figure 3. The predictions of temperature are the least 
satisfactory, but this is expected since the distribution depends on the difference 
between the fluxes of total heat and latent heat, both large quantities. It is 
clear that more elaborate and realistic distributions would improve the agree- 
ment, particularly near z = $lo, but the prediction errors are comparable with 
effects from uncertainty in the boundary conditions. In  particular, there is 
internal evidence that the effective roughness length of the grass changed from 
one day to another by anything up to 50 %. The basic steps of the calculation are: 

2k2x/z0 = ( - Mu,/uo - 4 - $ M )  exp ( - Mul/uo) 

(i) Compute uo/ul from 

using the observed values of the roughness lengths. 
(ii) Compute log ($Zo/zo) from 

(iii) Equate pc,Qa, the convective flux of total heat, to the measured net 
radiation, obtain the friction velocity u1 from the upstream velocity profile 
and calculate equivalent temperatures from 

k 2 X / Z 0  = (log ~ Z o / Z o  - 3) $Z0/zo. 

(iv) From the ground values of the equivalent temperature 
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find the corresponding values of ground temperature and humidity for saturated 
air. 

(v) Use 

to find the thermometric flux of latent heat. 

z = l m  x = 4 m  z =  16m 

z = 5cm z = 5 Z =  11.5 z = 5 z =  11.5 = 27.5 
Mean error +0*52 $0.84 -0.70 -0.01 -0.80 -1.04 
(Variance$ 0.50 0.36 0.16 0.74 0-44 0.29 
Mean change 2-3 4.9 2.85 9.3 5.7 2.8 
Predicted c&mge 
Observed change 

1.23 1.23 0.75 1-00 0.86 0.63 

N.B. Humidity is measured as difference of equivalent and sensible temperature. 

TDLE 3. Analysis of prediction errors for humidity 

7 

6 

4 

3 
4 6 8 10 12 14 

Humidity (thermometric units) (degC) 

FIGTJRE 4. Comparison of predicted and observed values of humidity, using runs 34-38 
of Rider et al. (1963). Numbers on the curves refer to distances in metres from the change 
of surface. 

(vi) Calculate humidities from 

T, = TL(&,) - w, + uo) 
with PwlPa = CP TWILW. 

(vii) Calculate temperatures from 

T = Ta-Tw. 
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7. Diffusion from a line-source-comparison with observation 
Diffusion from a line-source of heat is a problem closely related to the distribu- 

tion caused by a step change in surface flux. In  $4, it was shown that, with no 
change of roughness and for Q1 = 0, 

T = - (8o/k) # l W O L  

x =  1,m x = 4 m  2 =  1 6 m  

z = 5cm z = 5 z = 11.5 z = 5 z = 11.5 z = 27.5 
Mean error -0.08 -0.82 +0*58 -0.13 +0*76 +la40 
(Variance)* 0.51 0.70 0.42 0.85 0.90 0-62 
Mean change 0.7 2.5 1.45 4.6 3.1 1.3 
Predicted ckange 
Observed change 2.26 1.33 0-60 1.03 0.76 - ve 

TABLE 4. Analysis of prediction errors for sensible temperature 

Temperature (degC) 

FIGURE 5. Comparison of predicted and observed values of temperature, using runs 
34-38 of Rider et al. (1963). Numbers on curves refer to distances in metres from the 
change OF surface. 

where 8, = Qo/ul and 

l,(log lo/zo - 2JOW $1(r) 1% r d r ]  = 2k2X (7.1) 

to the usual approximation. To obtain the standard asymptotic form for 
dl,/dx a t  large values of log Zo/zo, it is necessary that 

(7.2) 

Fluid Mech. 22 52 
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A second requirement is that, if the diffusivities for heat and momentum in an 
equilibrium layer are everywhere in the ratio Kh/Km and not equal, 

$l('I) = ( K m / K h )  (lOg'I+cl) 
for small values of 7. From this result, the distribution from a line-source of 
strength QoA is obtained by superimposing the distribution for (i) Q(0) = 0 
for x < 0, Q(0) = Qo for x > 0 on the distribution for (ii) Q(0) = 0 for x < A, 
Q(0) = - Qo for x > A, where A is small. The composite distribution is 

loglo/%- qom $ll%'Id'I 1 

Som 
- -'I$i('I). (7.3) 

Qo A =- 

log lo/zo + 1 - 2 $1 log 'I d'I 
kU 

The distribution function for the line source $l(r) = q $ ; ( ~ )  satisfies the conditions 

and it seems certain that the temperature (or concentration) must decrease 
monotonically with height. These conditions restrict considerably the possible 
forms of $l(q-), and, in particular, the centroid of the distribution cannot be at 
a height less than t (Kh/Km) I,, attained with the ' top-hat ' distribution 

$l('I) = K m / K h  for 'I < 4 K h / K m .  (7 .5)  

With the mixing-length assumption, 

and for the Panofsky & Townsend profile 

(7.7) 
$l('I) = K m / K h { l o g  ('I Knk/Kh) + (l  - 7 K m / K h ) }  

$l('I) = Krn/Kh (l -'IKnk/Kh)? 

for 'I < K h / K m ,  

x = i K h / K m l o .  

The temperature scale of the distribution is very nearly proportional to x-l for 
large values of log Io/zo, as can be seen from the second form in equation (7.3). 
Defining the 'exponent of distance ' 

d(log 4) - - d(log T(O)) 
mcL = d(1ogx) d(1ogx) , 

it  is easily shown that 
m -2 

-m,= 1- ( 10g10/z0+1-2~ 0 $llog'Id'I) , 

and is usually within a few per cent of - 1. 
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Cermak (1963) assumed Lagrangian similarity of the diffusion process from 
a line source to obtain results that are similar in form to these ones, but an analysis 
of diffusion observations in terms of the values of m, led him to the conclusion 
that the constant b in his expression for the centroid of the distribution 

bkx =Z(lOgZ/Z,- l)-(l-b)(logh/zo+h) (7.9) 

was about 0.1 and certainly less than 0.2 (h is the height of the source). It was 
shown in I that b is simply a function of the profile shape, explicitly, 

(7.10) 

and the profile shapes observed at Cardington and Porton (Pasquill 1962) 
indicate that b = O.Sk(K,/K,) which is certainly much larger than 0.1. The 
particular observations which appear to be consistent only with the low value 
of the constant were obtained in wind tunnels with finite height of release, and 
the interpretation might be questioned on 6wo grounds-the validity of the cor- 
rection for finite height in equation (7.9) and the validity of the assumption that 
the diffused material is confined to a small fraction of the total thickness of the 
layer. The last assumption seems to be in error for the observations of Malhotra 
(1962) which provide the best evidence for a value of b near 0.1, at least in terms 
of the present theory. With the quotedroughness length of 2.5 x ft, the value 
of lo at 4.5ft from the source can be calculated from (7.1) to be nearly 0.19ft 
compared with a boundary-layer thickness of about 0.25 ft. The comparatively 
small value of m,,, interpreted by Cermak as the result of finite height of the 
source, could arise with equal plausibility from substantial diffusion into the 
outer part of the boundary layer and consequent limiting of the increase of Z. 

At this point, it may be of interest to show how the self-preserving distribution 
(7.3) can be used to calculate the diffusion from an elevated line source at a 
height it, small compared with the total thickness of the layer. It was explained 
in I that the process of differentiating self-preserving distributions with respect 
to x can be extended to distributions caused by line doublets, line quadrupoles 
and so on. The line doublet distribution is 

(7.11) 

and the quadrupole distribution 

T = L(- Q A3 d2 (I$) 3 d ( - - ) 2 q @ i +  1 dl, ( f2) '7 , (~$;)) .  d (7.12) 
ku, ax2 1,dx 31-,d, 1,ax 

For large values of log lo/zo, l,ldE,/dx = l /x very nearly, and the distributions 
approximate to 

i where (7.13) 

11.3 = 211.1 + 4711.; + r2Y.';. 1 
62-2 
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These and distributions for higher-order sources can be used to construct special 
initial distributions of temperature. As a simple example, we use the Panofsky 
& Townsend profile (7.7) to construct the distribution functions: 

(7.14) 1 $1 = 1 - 7  for 7 < 1, 

$2 = 1-27  for 7 < 1, 

$3 = 2-67+S(7-1)  for 7 < 1. 

Notice that $3 includes a &function of unit strength at  7 = 1. A concentrated 
source at height I ,  is provided by the combination 

= 2$,- 4$,+ 1Cr3 = S(r  - I), 

and the temperature distribution caused by injection of heat at rate &,A a t  
height h is 

(7.15) 

where x, is the distance from the source position to the origin of the self-pre- 
serving flows, given by 

2k2X0 = h(logh/z,-2/a 0 q51(7)log7d7). (7.16) 

The temperature at ground level is 
QoA x2 T(0)  = -____ 
ku, (x+x,)~' 

(7.17) 

and -m, = 1 -'-. 3x0 (7.18) 
x+x, 

Notice that the centroid of the line-source component is originally at a height of 
Qh and not at h as assumed by Cermak. 

In  general, the value of the exponent of distance is not sensitive to the value 
of the constant b and it is better to compare the theory with values of the depth 
of the diffused layer. Some relevant observations are quoted by Pasquill (1962). 
They refer to measurements downwind of a continuous source of pollutant and 
are presented as exponent of distance, height 8, at which the concentration has 
fallen to 10 % of the ground concentration and the variance 

2 2  = IOW c z 2 d z / j W  0 cdz. 

For the Panofsky & Townsend profile, Z2 = +$ and 8, = 0.91,, while for the mix- 
ing length profile, Z2 = 81% and 8, = 1.151,. The observed profiles are intermedi- 
ate between these forms. In  table 5, calculated values of I ,  and m, are compared 
with the observations and the agreement is good for 8, = I ,  and Z2 = +?& 
roughly the mean of the values for the mixing-length and Panofsky & Townsend 
profiles. 
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In  conclusion, the effects of instability on the diffusion are easily found by the 
method of $ 5 .  For example, the ground concentration remains proportional to 
l<ldl,/dx and approximately 

m, = - 1 - iat,/L + (log Z&, - p z .  (7.19) 

Observed 

Observations zo (cm) I ,  ~ 1 5 4  -mcl 2, z - mcz 

Porton 3 10.1 4.51 0.95 10 - 1.0, 0.9, 

Cramer (1957) <: 1 7.0-8.0 3.1-34 0-97 - 3.5 z 1.0 
(Pasquill 1962) 0.98 

(for 
zo = 0.5 

and 1.0 cm) 
Kazanskii & 0.4 6-8 2.8 0.98 7 - x 1.0 

top) 
Cardington 3 19 - 20 

Monin (1957) (visible 

- - - 
(229 m) (strong 
(Pasquill 1962) winds) 

N.B. heights are in metres. 

TABLE 5. Diffusion parameters at 100 m from a linear source at ground level 

8. Concluding remarks 
Good agreement of theoretical predictions with the available observations 

has been found for flow after a change of roughness (Panofsky & Townsend 
1964), for flow downwind of a fence, for temperature and humidity downwind 
of a change in surface, and for diffusion from a line-source. In  most of these situa- 
tions, the only disposable parameter is the shape of the relevant profile, whose 
variation is severely limited by the requirement that it assumes the logarithmic 
form inside the surface equilibrium layer. Consequently, little variation in the 
predicted magnitude of the more important quantities is found if the three profile 
shapes are interchanged. The observational evidence suggests that the real 
profiles are probably intermediate between the mixing-length profile and the 
Panofsky & Townsend (log-linear) profile. For the change-of-roughness flow, 
i t  may resemble the profile defined by equation (A 5) of paper I. 
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